Random Projections and Johnson-Lindenstrauss Lemma

Uri Shaham

April 8, 2024

1 Introduction: Linear Projections

Assume we have a datapoint $x \in \mathbb{R}^{d}$, that we want to project onto a p-dimensional subspace of \mathbb{R}^{d} spanned by vectors $\left\{u_{1}, \ldots, u_{p}\right\}$, with $p \ll d$. Let $U=\left[u_{1}, \ldots, u_{p}\right] \in \mathbb{R}^{d \times p}$. Let β represent coefficients of the linear combination of the u_{i} 's, so the data reconstruction is $\hat{x}:=U \beta$. Each such projection will have a residual $r=x-\hat{x}$, which will be smallest when $r \perp \operatorname{span}\left\{u_{1}, \ldots, u_{p}\right\}$. Hence

$$
U^{T}(x-U \beta)=0 \Rightarrow \beta=\left(U^{T} U\right)^{-1} U^{T} x
$$

Note that this is also the formula for the least squares coefficients. Then $\hat{x}=U \beta=U\left(U^{T} U\right)^{-1} U^{T} x$. Note that if the vectors $\left\{u_{1}, \ldots, u_{p}\right\}$ are orthonormal (which makes U an orthogonal matrix), then the formula simplifies to $\hat{x}=U \beta=U U^{T} x$, which is the same as reconstruction by PCA, for example.

1.1 Random Linear Projections

In PCA, for example, the matrix U so that the vectors $\left\{u_{1}, \ldots, u_{p}\right\}$ are directions with maximal variance. However, we could also use a random U, i.e., not learn it at all. For example, by sampling its entries iid from a standard Gaussian. Surprisingly, random U has good properties, in terms of distance preservation, despite the fact that is is totally independent of the data. The JL lemma, described next justifies this.

2 The Johnson Lindenstrauss Lemma

We first state a prove that random projection preserves norms:
Lemma 2.1 (Norm preservation using RP). Let $x \in \mathbb{R}^{d}$ and let $A \in \mathbb{R}^{p \times d}$ random matrix with entries sampled iid from a $\mathcal{N}(0,1)$ distribution. Let $\epsilon \in\left(0, \frac{1}{2}\right)$. Then

$$
\operatorname{Pr}\left((1-\epsilon)\|x\|^{2} \leq\left\|\frac{1}{\sqrt{p}} A x\right\|^{2} \leq(1+\epsilon)\|x\|^{2}\right) \geq 1-2 e^{-\frac{\left(\epsilon^{2}-\epsilon^{3}\right)^{p}}{4}}
$$

Proof. We first show that $\mathbb{E}\left[\left\|\frac{1}{\sqrt{p}} A x\right\|^{2}\right]=\mathbb{E}\left[\|x\|^{2}\right]$. First, note that $\mathbb{E}\left[\left\|\frac{1}{\sqrt{p}} A x\right\|^{2}\right]=\frac{1}{p} \mathbb{E}\left[\|A x\|^{2}\right]$.

Next, we compute the expectation of the j^{\prime} th entry $\mathbb{E}\left[[A x]_{j}^{2}\right]$:

$$
\begin{aligned}
\mathbb{E}\left[[A x]_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{d} A_{i j} x_{j}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j=1}^{d} \sum_{j^{\prime}=1}^{d} A_{i j} A_{i j^{\prime}} x_{j} x_{j^{\prime}}\right] \\
& =\sum_{j=1}^{d} \sum_{j^{\prime}=1}^{d} x_{j} x_{j^{\prime}} \mathbb{E}\left[A_{i j} A_{i j^{\prime}}\right] \\
& =\sum_{j=1}^{d} x_{j}^{2} \mathbb{E}\left[A_{i j}^{2}\right] \\
& =\sum_{j=1}^{d} x_{j}^{2} \\
& =\|x\|^{2} .
\end{aligned}
$$

Therefore

$$
\frac{1}{p} \mathbb{E}\left[\|A x\|^{2}\right]=\|x\|^{2} .
$$

Note that $[A x]_{i}=\sum_{j=1}^{d} x_{j} A_{i j}$ is a normal random variable with zero mean and, by the above, $\|x\|^{2}$ variance. Hence $\tilde{Z}_{i}:=\frac{[A x]_{i}}{\|x\|}$ is a standard normal random variable, with \tilde{Z}_{i} and \tilde{Z}_{k} independent for $i \neq k$. Thus, we can bound the probability of faliure for one side:

$$
\begin{aligned}
\operatorname{Pr}\left(\left\|\frac{1}{\sqrt{p}} A x\right\|^{2} \leq(1-\epsilon)\|x\|^{2}\right) & =\operatorname{Pr}\left(\sum_{i=1}^{p} \tilde{Z}_{i}^{2} \leq(1-\epsilon) p\right) \\
& =\operatorname{Pr}\left(\chi_{p}^{2} \leq(1-\epsilon) p\right) \\
& \leq \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right),
\end{aligned}
$$

where the last transition is obtained using standard χ^{2} concentration bounds, not proved here. A similar argument will show that $\operatorname{Pr}\left(\left\|\frac{1}{\sqrt{p}} A x\right\|^{2} \geq(1+\epsilon)\|x\|^{2}\right) \leq \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right)$, which together prove the statement.

Lemma 2.2 (χ^{2} concentration bounds).

$$
\begin{aligned}
& \operatorname{Pr}\left(\chi_{p}^{2} \leq(1-\epsilon) p\right) \leq \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right) . \\
& \operatorname{Pr}\left(\chi_{p}^{2} \geq(1+\epsilon) p\right) \leq \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right) .
\end{aligned}
$$

We can now state and prove the Johnson-Lindenstrauss lemma.

Lemma $2.3(\mathrm{JL})$. Let $\epsilon \in\left(0, \frac{1}{2}\right)$ and $Q \subset \mathbb{R}^{d}$ be a set of n points, and let $p \geq \frac{12 \log n}{\epsilon^{2}}$. Then there exists a mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ such that for all $v, u \in Q$,

$$
(1-\epsilon)\|v-u\|^{2} \leq\|f(v)-f(u)\|^{2} \leq(1+\epsilon)\|v-u\|^{2} .
$$

The proof is constructive (i.e., constructs f and works by the probabilistic method, i.e., we prove that the probability that the desired f exists is strictly greater than 0 , hence it must exist. It utilizes the union bound, which says that for a set of events $\left\{A_{1}, A_{2}, \ldots\right\}, \operatorname{Pr}\left(\cup_{i} A_{i}\right) \leq \sum_{i} \operatorname{Pr}\left(A_{i}\right)$.
Proof. Let $f: x \mapsto \frac{1}{\sqrt{p}} A x$, where $A \in \mathbb{R}^{p \times d}$ is a random matrix with iid $\mathcal{N}(0,1)$ entries. Then the probability that the statement in the lemma fails is

$$
\begin{align*}
& \operatorname{Pr}\left(\exists u, v \in Q:(1-\epsilon)\|v-u\|^{2}>\|f(v)-f(u)\|^{2} \text { or }\|f(v)-f(u)\|^{2}>(1+\epsilon)\|v-u\|^{2}\right) \\
& \leq \sum_{u, v \in Q} \operatorname{Pr}\left((1-\epsilon)\|v-u\|^{2}>\|f(v)-f(u)\|^{2}\right)+\operatorname{Pr}\left(\|f(v)-f(u)\|^{2}>(1+\epsilon)\|v-u\|^{2}\right) \\
& \leq 2 n^{2} \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right) \tag{1}
\end{align*}
$$

where the last step is obtained by the norm preservation lemma, applied to the vector $u-v$, and using the fact that the map f is linear. Finally, as $p \geq \frac{12 \log n}{\epsilon^{2}}$ we have

$$
2 n^{2} \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right) \leq 2 n^{2} \exp \left(-\frac{\frac{12 \log n}{\epsilon^{2}}}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right) \leq 2 n^{2} \exp (-3 \log n)<\frac{2}{n} \rightarrow 0
$$

A corollary of the norm preservation lemma shows that random projections preserve inner products as well.

Corollary 2.4. Let $u, v \in \mathbb{R}^{d}$, with $\|u\|,\|v\| \leq 1$, and let $f: x \mapsto \frac{1}{\sqrt{p}} A x$ be the JL transform as above. Then

$$
\operatorname{Pr}(|\langle u, v\rangle-\langle f(u), f(v)\rangle|>\epsilon) \leq 4 \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right)
$$

Proof. Applying the norm preservation lemma to the vectors $u+v, u-v$ we have that with probability at least $1-2 \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right)$,

$$
\begin{aligned}
& (1-\epsilon)\|u-v\|^{2} \leq\|f(u-v)\|^{2} \leq(1+\epsilon)\|u-v\|^{2} \\
& (1-\epsilon)\|u+v\|^{2} \leq\|f(u+v)\|^{2} \leq(1+\epsilon)\|u+v\|^{2}
\end{aligned}
$$

so

$$
\begin{aligned}
4\langle f(u), f(v)\rangle & =\|f(u+v)\|^{2}-\|f(u-v)\|^{2} \\
& \geq(1-\epsilon)\|u+v\|^{2}-(1+\epsilon)\|u-v\|^{2} \\
& =4\langle u, v\rangle-2 \epsilon\left(\|u\|^{2}+\|v\|^{2}\right) \\
& \geq 4\langle u, v\rangle-4 \epsilon
\end{aligned}
$$

so $\langle f(u), f(v)\rangle \geq\langle u, v\rangle-\epsilon$. Similarly, we can get $\langle f(u), f(v)\rangle \leq\langle u, v\rangle+\epsilon$, and both events occur with probability at least $1-2 \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right)$. Thus, by union bound, the probability of a failure is bounded by $4 \exp \left(-\frac{p}{4}\left(\epsilon^{2}-\epsilon^{3}\right)\right)$.

3 Application: Approximate Nearest Neighbor Search

Given a set of n data points $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$, and a query point $y \in \mathbb{R}^{d}$, the goal of nearest neighbor search is to find x_{i} which minimizes the distance $\left\|x_{i}-y\right\|$. A naive implementation of NN search has time complexity $O(n d)$, simply by computing all distances. However, in practice we often don't really need the exact nearest neighbors, and approximate neighbors suffice.
Definition 3.1 (ϵ-approximate nearest neighbor). Given a query point y, ϵ-approximate nearest neighbor search returns a point $x \in \mathcal{X}$ such that $\|x-y\| \leq(1+\epsilon) \min _{i}\left\|x_{i}-y\right\|$.

In practice, the approximate nearest neighbor is approached via one more reduction, to a near neighbor search.

Definition 3.2 ($\epsilon, r)$-approximate near neighbor search). Given a query point y, and a nonnegative number $r,(\epsilon, r)$-approximate near neighbor search works as follows:

- If there exists $x \in \mathcal{X}$ with $\|x-y\| \leq r$, it returns "Yes" and an index i of a point such that $\left\|x_{i}-y\right\| \leq(1+\epsilon) r$.
- If there does not exist $x \in \mathcal{X}$ with $\|x-y\| \leq r$, it returns "No".

To solve ϵ-approximate nearest neighbor search using (ϵ, r)-approximate near neighbor search, we can scale the data so that $\max _{i}\left\|x_{i}\right\|=\frac{1}{2}$, so the diameter (the distance between the two farthest points) is at most 1 . We start from δ, k such that $\frac{1}{(1+\delta)^{k}}$ is sufficiently small, and run a sequence of (δ, r) approximate near neighbor searches with $r=\frac{1}{(1+\delta)^{k}}, \frac{1}{(1+\delta)^{k-1}}, \ldots, 1$, and return i corresponding to the minimum r for which the answer is "Yes". Then we know that $\left\|x_{i}-y\right\| \leq(1+\delta) r$. In addition, we know that $\min _{i}\left\|x_{i}-y\right\|>\frac{r}{1+\delta}$, hence altogether

$$
\left\|x_{i}-y\right\| \leq(1+\delta) r \leq(1+\delta)^{2} \min _{i}\left\|x_{i}-y\right\|
$$

That means we have solved ϵ-approximate nearest neighbor search with $\epsilon=2 \delta+\delta^{2}$, and $k+1$ applications of ϵ-approximate nearest neighbor search.

3.1 Solving (ϵ, r)-approximate near neighbor search

Preprocessing We partition the space to d-dimensional cubes with side length $\frac{\epsilon r}{\sqrt{d}}$. The diameter of each cube is ϵr. Then for each point x_{i} and cube C such that intersects the r-ball $B\left(x_{i}, r\right)$ around x_{i}, we insert the (key, value) pair $\left(x_{i}, C\right)$ to a dictionary.
Queries Given a query point y, we find the cube C which contains y. We then look for C in the dictionary.

- If C does not exist, then for each $x_{i},\left\|x_{i}-y\right\|>r$, so we say "No".
- If C is in the dictionary, we get an arbitrary point x_{i} such that $B\left(x_{i}, r\right)$ intersects C. Then $\left\|y-x_{i}\right\| \leq \epsilon r+r=(1+\epsilon) r$ (the distance is bounded by r plus the diameter of the cube). Thus we say "Yes" and return x_{i}.
Space analysis The volume of d-dimensional ball of radius r is approximately $2^{O(d)} r^{n} / d^{\frac{d}{2}}$. The volume of every cube is $(\epsilon r \sqrt{d})^{d}$. Thus each ball is intersected by approximately $\frac{2^{O(d)} r^{n} / d^{\frac{d}{2}}}{(\epsilon r \sqrt{d})^{d}}=O(1 / \epsilon)^{d}$ cubes. Therefore the size of the dictionary is exponential in the dimension.
Time analysis based on the above, the time to build the dictionary is also $O(1 / \epsilon)^{d}$. Finding the cube C that contains y takes $O(d)$ operations (we need to go over all coordinates), and then looking for C in the dictionary is $O(1)$.

3.2 Improving performance using JL

By the JL lemma, we know that distances are approximately preserved under random projection to $O\left(\log n / \epsilon^{2}\right)$ dimensions, which is $O(\log n)$ assuming ϵ is constant. The time to apply the JL transform to all n points is therefore $O(d n \log n)$. The dictionary space and time complexities are $(1 / \epsilon)^{O(\log n)}$, which is polynomial. Query time is $d \log n$ to apply the JL transform to y, and $O(\log n)$ to find the cube of y.

Homework

1. Code an experiment checking the norm preservation lemma and the JL lemma.
2. Code an experiment comparing an exact NN search and ANN search (using off-the shelf ANN packages is recommended).
